Hermite polynomials — In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical… … Wikipedia
Discrete q-Hermite polynomials — In mathematics, the discrete q Hermite polynomials are two closely related families hn(x;q) and ĥn(x;q) of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al Salam and Carlitz (1965). Roelof Koekoek,… … Wikipedia
Continuous big q-Hermite polynomials — In mathematics, the continuous big q Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their… … Wikipedia
Continuous q-Hermite polynomials — In mathematics, the continuous q Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their… … Wikipedia
Hermite number — In mathematics, Hermite numbers are values of Hermite polynomials at zero argument. Typically they are defined for physicists Hermite polynomials.Formal DefinitionThe numbers H n = H n(0), where H n( x ) is a Hermite polynomial of order n , may… … Wikipedia
Hermite spline — In the mathematical subfield of numerical analysis, a Hermite spline is a spline curve where each polynomial of the spline is in Hermite form.ee also*Cubic Hermite spline *Hermite polynomials *Hermite interpolation … Wikipedia
Hermite , Charles — (1822–1901) French mathematician Hermite was born in Dieuze, France. His mathematical career was almost thwarted in his student days, since he was incapable of passing exams. Fortunately his talent had already been recognized and his examiners… … Scientists
Charles Hermite — Hermite redirects here. For other uses, see Hermite (disambiguation). Charles Hermite Charles Hermite circa 1901 … Wikipedia
Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… … Wikipedia
Laguerre polynomials — In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 ndash; 1886), are the canonical solutions of Laguerre s equation::x,y + (1 x),y + n,y = 0,which is a second order linear differential equation.This equation has… … Wikipedia
Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… … Wikipedia